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Physical constraints during Snowball Earth
drive the evolution of multicellularity
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Molecular and fossil evidence suggests that complex eukaryotic multicellu-
larity evolved during the late Neoproterozoic era, coincident with
Snowball Earth glaciations, where ice sheets covered most of the globe.
During this period, environmental conditions—such as seawater tempera-
ture and the availability of photosynthetically active light in the oceans–
likely changed dramatically. Such changes would have had significant
effects on both resource availability and optimal phenotypes. Here, we con-
struct and apply mechanistic models to explore (i) how environmental
changes during Snowball Earth and biophysical constraints generated selec-
tive pressures, and (ii) how these pressures may have had differential effects
on organisms with different forms of biological organization. By testing a
series of alternative—and commonly debated—hypotheses, we demonstrate
how multicellularity was likely acquired differently in eukaryotes and
prokaryotes owing to selective differences on their size due to the bio-
physical and metabolic regimes they inhabit: decreasing temperatures and
resource availability instigated by the onset of glaciations generated selective
pressures towards smaller sizes in organisms in the diffusive regime and
towards larger sizes in motile heterotrophs. These results suggest that chan-
ging environmental conditions during Snowball Earth glaciations gave
multicellular eukaryotes an evolutionary advantage, paving the way for
the complex multicellular lineages that followed.
1. Introduction
A fundamental focus of biology is understanding the vast range of body sizes
and the associated diversity in the number of levels of hierarchical organization
[1,2]. Each new level of organization is typically associated with a major event
in evolutionary history that changed the state of the evolutionary game. By
adding a new hierarchical level to the organization of organisms, these major
transitions in individuality added new niches to the ecosystem (e.g. trophic)
and introduced new phenotypes. Such transitions include the origin of cells,
eukaryotes, multicellularity, and colonial and social organisms. The insight
that these transitions share evolutionary processes involved in the emergence
of a new level of organization has proven to be a powerful research programme
(see [1,3–5] for comprehensive reviews of the topic).

However, it is challenging to understand certain transitions, such as multi-
cellularity, because of the large number of independent origins, the fact that
eukaryotes and prokaryotes both evolve multicellular forms, and the lack of
substantial fossil and molecular evidence [6,7]. The evolution of multicellularity
stands as one of the most pivotal milestones in the history of life on Earth as it
revolutionized biological organization and paved the way for the diversity of
macro-scale organisms we observe today. Its emergence allowed specialized
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cells to cooperate, leading to the development of complex tissues, organs, and organ systems. This enhanced complexity further
facilitated the evolution of complex organisms with more sophisticated behaviours enabling adaptation to a wide range of environ-
ments and the exploitation of new ecological niches and new biological scales. Multicellularity laid the foundation for the diverse
and interconnected web of life that shapes our planet’s ecosystems today.

Fossil and molecular evidence indicates that complex multicellularity originated and proliferated during the Neoproterozoic
era (1000–541Ma) [8,9]. Previous work commonly proposed that this evolution was connected to an increase in oxygen levels
that removed a physical constraint on size. However, recent work suggests that sponges, a likely morphology for the last
common metazoan ancestor, can survive oxygen levels as low as those present during the Neoproterozoic era [10], suggesting
that low oxygen levels may not have been a physical constraint preventing the emergence of multicellular eukaryotes. Further-
more, other work suggests that the evolution of more complex eukaryotes, including multicellular organisms, could have led
to ocean oxygenation [11] (as opposed to the other way around), and we know that multicellular eukaryotes can cope with
low oxygen given that it is likely that the sea floor was anoxic when the first undisputed metazoan fossils appeared in deep
water [12–14]. If the appearance of multicellularity was not caused by changing oxygen levels, an alternative mechanism for
why multicellular eukaryotes emerged during this period is needed.

Extreme glaciations during the Cryogenian period (approx. 720−635 Ma), a phenomenon commonly referred to as Snowball
Earth, led to a radical transformation of the Earth’s climate and oceans [15]. Across two major glaciations, lasting almost 50
Myr, glaciers appear to have reached the Equator, although there is still debate over the extent of coverage [16,17]. The global gla-
ciations resulted in the widespread freezing of the planet’s surface, severely restricting the availability of light and nutrients to
depths below. Prior to Snowball Earth, simulations suggest the ocean was relatively warm, with surface water temperatures reach-
ing 30°C at the Equator [18]. However, depending on the severity of glaciations, temperatures likely dropped to between −4 and
4°C [17,19].

Given that such extreme conditions persisted for tens of millions of years, it is important to understand how these conditions
affected the evolutionary trajectories of existing organisms, which requires a greater understanding of the broader environmental
and ecological changes that occurred. Molecular clock estimates show significant bottlenecks in populations of autotrophs during
this period [20], but others report the maintenance of an active, biologically mediated, nitrogen cycle [21]. Whether organisms were
confined to small environmental niches on top of the ice or there were areas of open ocean under ‘slush-ball’ conditions, both auto-
trophs and heterotrophs would have had to contend with lower temperature, light availability and nutrient concentrations [17].
The decrease in temperature would have slowed down metabolism and diffusion rates, further decreasing primary productivity.

Despite evidence of profound environmental and ecological change, fossil evidence does not indicate any significant extinc-
tions [22,23]. One potential means of success in these conditions may have been found in the formation of cooperative groups
of cells in some lineages, which then could have led to the emergence of multicellular life. Interestingly, an increased abundance
of eukaryotes and an increase in mean organism size have been proposed as a mechanism for the end of the Neoproterozoic glacial
events, owing to an increase in organic matter sinking rates [24].

Recent work [25] suggests that the long-term loss of low-viscosity environments, instigated by decreasing ocean temperatures
during the Cryogenian, generated selective pressures towards multicellularity in eukaryotes. This work suggests that adaptation to
environmental conditions led to larger sizes and speeds only accessible through multicellularity to exploit limited resources and
satisfy metabolic needs during Snowball Earth’s high-viscosity regimes. Following the cessation of glaciation and the return of
low-viscosity environments, these newly evolved multicellular taxa remained and proliferated.

Beyond the viscosity shifts associated with the much lower temperatures of Snowball Earth there are many other physical,
physiological and ecological changes expected during this interval (see e.g. [17,21,26,27]). For example, the accumulation of sig-
nificant sea ice likely decreased light flux to the ocean and decreased the terrestrial nutrient run-off [16,17]. Ecological and
biogeochemical features associated with sinking, remineralization, predation and the size distribution of organisms are all also
expected to shift in this new environment.

For an organism to survive it must be able to access enough nutrients to satisfy metabolic demands. Several factors can be
altered and integrated to allow an organism to increase nutrient capture, including metabolic rate, motility and size. Given the
existence of numerous optima, the specific combination of changes to metabolic rate, motility and size is less important than
the first-order need to acquire nutrients.

Because of the multiple contemporaneous origins of eukaryotic multicellularity an environmental driver is likely. However, an
environmental driver cannot be universal because only a few of the many co-occurring eukaryotic lineages evolved multicellular-
ity, such that the driver must also sort between adaptive strategies. An answer may be found if there are competing biophysical
aspects that share a common cause. Cold conditions during Snowball Earth may provide such a cause, with effects on viscosity,
diffusivity and metabolic rates that led to complex trade-offs.

This paper presents analyses of mechanistic models for exploring interactions between the environmental changes associated
with Snowball Earth, physical constraints on biological processes, and differential selective pressures between single-celled and
simple multicellular organisms. First, we describe a global productivity model that suggests Snowball Earth’s changes in temp-
erature and light availability generated a significant decrease in primary production. Second, based on this insight, we
compare two models that describe how organisms with different biological organizations—a non-motile unicellular organism rely-
ing on diffusion (figure 1a) and a simple motile multicellular organism—are affected by the environmental changes predicted
during Snowball Earth.

For our multicellular organism, we model a hypothetical and idealized ‘choanoblastula’ (figure 1b). The choanoblastula is het-
erotrophic, motile and composed of a hollow sphere of cells, such that it has similar morphology and physiology to the green algae
genus Volvox, except that it does not photosynthesize. Something akin to this model organism may have existed during the
Cryogenian, but would have been displaced by descendant lineages (e.g. Metazoa).



C = C�

C = C�

a

a

diffusive path

(a)

(b)

C = 0

v

Figure 1. (a) Non-motile diffusive cell. The spherical cell takes in all nutrients at the cell’s surface (C = 0), causing chemical resources (e.g. glucose) to diffuse
towards the cell from far away (C = C∞). (b) Motile choanoblastula. The organism is hollow with an outer radius a, and swims at a velocity v. The organism’s
motility means it travels ballistically relative to its prey. Resource concentration is assumed to be constant (C = C∞).
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Our results suggest differential responses to selective pressures: (i) for organisms operating in the diffusive regime, decreasing
temperature and resource availability leads to a decrease in organismal size; and (ii) for motile heterotrophs with a simple
multicellular morphology, environmental changes accompanying Snowball Earth selected for larger organisms.
2. Methods
(a) Global productivity model
To understand the impacts that Snowball Earth had on eukaryotes and early Metazoa, it is crucial to understand how the environmental
changes impacted the broader ecosystem. A simple method to estimate the magnitude of these changes is to calculate the net primary
productivity (NPP) as a function of temperature and intensity of photosynthetically active radiation (PAR) [28]:

NPP ¼ 1
V

Xna
i¼1

ePi, ð2:1Þ

where V is the volume of water, na is the number of autotrophic cells, e is the efficiency of production of organic matter and Pi is the
productivity of each autotrophic cell. The productivity of each autotroph can be modelled as a function of it is metabolic rate and
PAR. The metabolic rate is modelled using the metabolic theory of ecology (MTE) [29,58], which relates metabolism (B) to temperature
(T) and organism mass (Mi):

B ¼ b0 e�Ea=kTMa
i , ð2:2Þ

where Ea is the average activation energy of metabolic reactions, b0 is a constant, k is Boltzmann’s constant and α is a power-law scaling
term. The scaling term α is normally assigned a value of 3/4 for multicellular organisms, and 1 for single-celled eukaryotes [30,31].

Productivity’s dependence on light intensity (I) is given by a Monod equation [32], where KI is the half-saturating term. Combining the
dependence of productivity on metabolic rate and light intensity results in the following expression [28]:

Pi ¼ p0 e�Ea=kT I
I þ KI

Ma
i , ð2:3Þ

where p0 is a constant.
To model na, the steady-state biomass model in [33] is employed. Assuming constant cell size, this model calculates the supported biomass

under given nutrient flux conditions, allowing us to solve for the population carrying capacity for a given set of environmental conditions.
(b) Uptake–metabolism energy balance
An energy balance was used to model the impact of changing temperature and resource concentration on organisms, where the rate of
energetic resource uptake (U) must be greater than or equal to the rate of energy use in the organism’s metabolism (B):

U � B: ð2:4Þ

To understand how environmental changes altered optimal phenotypes, resource uptake and metabolism can be modelled as func-
tions of temperature, resource concentration and organismal traits (which are assumed to be generated from body size). Both rates
depend on specific resource acquisition strategies and organism morphologies, two of which we explore here.
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(i) The non-motile diffusive cell
The modelled organism was inspired by smaller prokaryotes, with the following traits: single-celled, non-motile and reliant upon diffu-
sion for uptake (figure 1a). Assuming that the cell takes up all resources at its surface, and that resource concentration approaches a
constant (C∞) far away from the cell, we can solve the diffusion equation to obtain an equation for resource concentration

C ¼ C1 1� a
r

� �
, ð2:5Þ

where a is the radius of the cell and C is the nutrient concentration at some distance r from the cell’s centre (see electronic supplementary
material for detailed derivation). The cell’s total resource influx can be determined by applying Fick’s Law of Diffusion [34] to calculate
flux density and integrating it across the cell’s surface [35]:

U ¼ 4pDaC1: ð2:6Þ

Here, D is the diffusivity of the resource, which can be defined by the Stokes–Einstein equation [36]. Viscosity (η), can be modelled as a
function of temperature using the Vogel–Fulcher–Tammann (VFT) equation [37]. Diffusivity is inversely proportional to this viscosity. By
incorporating these physical models into the uptake model (equation (2.6)) resource uptake for the diffusive cell is modelled as a function
of temperature, resource concentration and cell size:

UðT, C1, aÞ ¼ 2
3
kT
h0R

e�A=ðT�CÞaC1 ð2:7Þ

Equation (2.2) is used to model the metabolic rate of the diffusive cell [29]. Also, the conversion between volume and mass is approximated
using a constant cell density. Using these definitions for resource uptake and metabolic rate in equation (2.4) and solving the inequality for
organism radius (a) results in the model for the maximum diffusive cell size as a function of temperature and resource concentration [58]:

a � 2
3
kT
h0r

e�A=ðT�CÞ C1
B0

e�EaðT�T0Þ=kTT0

� �1=ð3a�1Þ
: ð2:8Þ

(ii) The motile choanoblastula
The choanoblastula employs a different uptake strategy, and its morphology leads to a different mass–metabolism scaling relation. The
resource uptake rate is based on ballistic velocity of the organism, and its metabolism is based on the MTE and an additional motility cost.

Owing to the relative difference in velocity that arises from the choanoblastula’s motility, its uptake is ballistic rather than diffusive
(figure 1) [38,39]. In this case, the choanoblastula is colliding with its resource, causing resource uptake to scale with its cross-sectional
area [40]:

U ¼ pa2vC1, ð2:9Þ
where v is the velocity of the choanoblastula relative to the resource. The velocity scales with organism radius and the viscosity of the
surrounding fluid [41]. This is summarized in the generalized model [25]

v ¼ babh�m, ð2:10Þ
where β is a constant, and b and m are scaling coefficients. Estimates of b range from 0.5 to 1 [25,38,42], and estimates of m range from 0.4 to 4
depending on the species [25], with a value of 1 found for Chlamydomonas [43]. Using the VFT equation to define viscosity and equation (2.10) to
define velocity in equation (2.9) results in a model for ballistically motile resource uptake as a function of temperature and organism radius.

Organismal metabolism was modelled by employing the MTE (equation (2.2)) to model basal metabolism with a motility cost. The
basal metabolism scales with organismal mass, which is proportional to the number of cells in the organism. Owing to its hollow-
sphere morphology, the basal metabolic rate is proportional to organismal surface area:

B ¼ B0 e�Ea=kT4pRa2: ð2:11Þ

Assuming the organism exists at a Reynolds number less than 1 (i.e. where viscous forces of the fluid are dominant over inertial
forces), the power it takes to maintain a velocity v through the fluid is given by Stokes’ Law [44], which, along with a coefficient of effi-
ciency (e), acts as the motility cost:

W ¼ 6p
ahr
e

v2: ð2:12Þ

Incorporating each component of the model, the full energy balance becomes:

C1pa2þbb(h0 e
A=ðT�CÞ)�m � 4B0 e�Ea=kTa2RþW , ð2:13Þ

where W, the metabolic cost of motility, can be expanded using equations (2.10), (2.12) and the VFT equation to be a function of tempera-
ture and organism radius (see electronic supplementary material for complete expression).
3. Results
(a) Global productivity model
Four models of NPP were developed and analysed under varying ecological and physiological responses to environmental
changes (figure 2; see electronic supplementary material for parameter table). Models were evaluated over the same range
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Figure 2. Contour-plots showing the log10 of net primary productivity (NPP) as a function of temperature (°C) (x-axis) and the relative log10 of photosynthetically
active light availability (y-axis). (a) Global NPP given a constant number of primary producers with constant mass. (b) Global NPP given a constant number of
primary producers, but their mass changes as a function of temperature based on the diffusion model (equation (2.8)). (c) Global NPP given constant population
size, where the size of primary producers scales with the diffusion model (nutrient concentration is assumed to decrease with temperature, and is used to calculate
producer size). (d ) Global NPP where size is held constant, but population changes with temperature and limiting-nutrient concentration based on the steady-state
biomass model in [33].
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of temperature and PAR availability, but population size and producer size were either held constant or allowed to vary
according to models.

Under the best case, where primary producer mass and population size each remain constant with decreasing temperature
and light, reduced metabolic rates lead to a two order-of-magnitude decrease in NPP (figure 2a). In reality, most primary
producers rely on diffusion to obtain the inorganic nutrients needed for growth. The diffusion model (equation (2.8)) can
be employed to consider how the primary producer’s size would have changed as temperature decreased. Assuming
that both the concentration of inorganic nutrients and the number of primary producers are constant, introducing the
temperature–size dependence of the primary producers indicates that NPP would decrease by 2.5–3 orders of magnitude
(figure 2b).

During the Cryogenian, environments capable of supporting life became more oligotrophic, reducing resource availability,
and became eutrophic after melting [17,45]. The impact of nutrient availability was incorporated into the NPP model by
assuming that nutrient availability linearly decreases by half over the temperature interval. Nutrient availability could impact
the size of primary producers (figure 2c) or the number of primary producers (figure 2d ). Both cases lead to significant decreases
in NPP, with an approximately 3.5 order-of-magnitude decrease for nutrient-limited cell size, and a 4.5 order-of-magnitude
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decrease for nutrient-limited population size. Even when assuming resilient physiologies and ecosystems, decreased organic
resource availability would have been a major environmental change for existing heterotrophic organisms.
(b) The diffusive cell
The non-motile diffusive cell’s dependence on temperature (equation (2.8)) is twofold: (i) the metabolic rate’s dependence on temp-
erature and (ii) the uptake rate’s dependence on diffusivity and viscosity. The decrease in temperature that accompanied Snowball
Earth caused an increase in viscosity accompanied by a decrease in diffusivity and nutrient uptake, but also led to a slower meta-
bolic rate. Although uptake drops to less than half of its pre-Snowball Earth value, under an activation energy of 0.62 eV, metabolic
rate drops by nearly a factor of 10 (figure 3). The slow-down in metabolic rate means that, although the cell’s uptake slows, it is
able to grow in size as temperature decreases.

Based on the results from the NPP calculation, it is important to consider a decrease in organic resource concentration in
addition to temperature decrease during Snowball Earth. The non-motile organism relying on diffusion must shrink in size, redu-
cing its radius a, to adapt to lower resource availability (figure 4). Under the best supported parameter values (see electronic
supplementary material), the model predicts a cell radius of approximately 6 μm prior to Snowball Earth and a radius of approxi-
mately 0.25 μm during Snowball Earth. Importantly, we show that cell size changes are greatly impacted by the assumed value of
average metabolic activation energy Ea. This value influences how metabolism scales with temperature, impacting the relative
change between uptake and metabolic rate (figure 3b). For all values of Ea, there is a decrease in cell size as resource availability
drops, but varying values of Ea can change the temperature dependence of diffusive cell size (figure 6). While the average meta-
bolic activation energy determines the response to temperature, all diffusive organisms, regardless of Ea, must have decreased in
size to survive the Cryogenian period owing to the decrease in resource availability.
(c) The motile choanoblastula
The choanoblastula’s motility introduces an additional temperature dependence to the energy balance owing to the cost of moti-
lity’s dependence on viscosity (η) of water. However, the motility cost is relatively small compared with the basal metabolic cost
and uptake rate, and therefore has a negligible effect (figure 7). Resource uptake scales with organism radius (a1+2b, where 0.5≤
b≤ 1) more quickly than the metabolic rate, which scales with a2 owing to cells only existing on the sphere’s surface. Because
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resource uptake scales at a higher rate, there exists a critical size where for smaller radii the metabolic rate is greater than the
uptake rate, and for larger radii the uptake rate is greater than the metabolic rate (figure 7). This critical radius defines the mini-
mum size of the organism for the given temperature and resource concentration, and is the solution to the energy balance in
equation (2.13).

The critical radius increases with decreasing nutrient concentration, suggesting organisms using this strategy would have
increased in size in response to the environmental changes during Snowball Earth (figure 5). Under the best estimates for par-
ameter values, the choanoblastula goes from a minimum radius of approximately 12.5 μm prior to Snowball Earth to a
minimum radius of approximately 7mm during Snowball Earth. Like the diffusive model, the activation energy Ea impacts the
relationship between temperature and organism size. While an activation energy of 0.62 eV results in size decreasing with decreas-
ing temperature, an activation energy below 0.22 eV inverts the relationship (figure 6). Regardless of average activation energy, the
choanoblastula would have increased in size during Snowball Earth owing to the drop in resource availability.
4. Discussion
(a) Ecological changes during Snowball Earth
Changes in temperature, inorganic nutrient concentrations and light availability had major impacts on the existing organisms and
broader ecosystem. The exponential dependence of metabolic rate on temperature caused the primary producer metabolic rates to
decrease with temperature, slowing productivity. This decrease was further exacerbated by the physiological and ecological
impacts caused by the physical changes accompanying the onset of Snowball Earth glaciations, including reduced light under
sea ice, higher viscosity and lower diffusivity. Under the most conservative assumption that primary producer size and population
did not change, NPP would still decrease by two orders of magnitude (figure 2a). When the impacts of both nutrient concentration
and temperature are considered, that decrease varies between 2.5 and 4.5 orders of magnitude (figure 2b–d).

A reduction in NPP of this magnitude would pose a significant hurdle for heterotrophs, leading to an increase in competition
for the remaining resources. This increase in competition was a significant evolutionary driver, which may help to explain why
multiple multicellular lineages appeared in this time frame. The diverging response of the two modelled organisms shows two
possible evolutionary paths. Heterotrophic eukaryotes in the Cryogenian were forced to either get smaller and compete with
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prokaryotes better suited to the diffusive regime, or become larger, more complex and multicellular. These observed alternative
strategies help explain why some, but not all, eukaryotes evolved multicellularity during this time.

(b) Morphological differences lead to different adaptive strategies
A key difference between the two presented morphological models is the scaling between organism size and uptake that originates
from two mechanistically different uptake strategies. In the diffusive model, uptake scales with organismal radius owing to the
physics of diffusion constraining its rate (equation (2.6)). By becoming motile and entering the ballistic regime, the choanoblastula
uptake rate scales with its cross-sectional area (equation (2.9)) and its velocity (equation (2.10)), which in turn scales with organism
size. This difference means that an increase in size leads to a large increase in uptake for the choanoblastula compared with the
diffusive cell.

Bacterial multicellularity is common and diverse, with quorum sensing, metabolic division of labour, large size and spatial
structure [46–50]. In particular, stromatolites have a deep geological history, potentially extending back to the first fossil evidence
of life [51,52]. As all bacteria are obligatory diffusion specialists, life within a stromatolite is subject to the same physical processes
we model for a solitary diffusive cell [53,54]. Therefore, we can make a first-order prediction that the effects of Snowball Earth
conditions on stromatolites should match the predictions for solitary diffusive cells. This may provide an additional prediction
for the decline in stromatolite abundance and size in the late Neoproterozoic prior to the origin and diversification of grazing
and bioturbating bilaterian animals [55,56].

At the size of eukaryotic cells and simple metazoa, the cost of motility becomes vanishingly small, and provides an enormous
benefit for maintaining a larger size by increasing resource uptake (figure 7b). However, becoming motile is not enough to offset
lower resource availability. The hollow morphology is essential, as it reduces the mass-scaling of metabolic cost of the organism by
reducing metabolically active volume while maintaining effective surface area for nutrient uptake. This change in scaling is
ubiquitous among complex multicellular organisms, as seen in the infamous two-thirds and three-quarter power laws [29].

Together, these adaptations invert the relationship between nutrient uptake and metabolic rate as a function of organism size.
For the diffusive cell, metabolic rate increases faster than uptake, constraining the maximum cell size (figure 7a). The opposite is
true for the choanoblastula, in which faster uptake means that the energy balance defines a minimum size, allowing it to grow
larger until other constraints are reached (figure 7b) [41].

(c) Adaptation of activation energy
Activation energy (Ea) is the amount of energy required to reach a transition state, and the source of this energy required to drive
reactions is typically heat energy from the surroundings. These results show that organismal size responses to changes in temp-
erature are highly sensitive to activation energy (figures 4 and 5). Activation energies vary significantly across life on Earth [57],
although much research assumes an average value (0.62 eV [58]); assuming this value in our models (and thus constraining the
relationship between metabolic rate and resource uptake to a specific regime) suggests that diffusive cells must get larger at
lower temperatures and the choanoblastula organisms must get smaller (figure 6).

However, given the range of measured activation energies, and the fact that unicellular organisms commonly display lower
average energies [57], it is necessary to consider differential relationships between metabolic rate and nutrient uptake. The meta-
bolic activation energy emerges from the average activation energies of the underlying enzyme-catalysed reactions that fuel the
organism’s metabolism. Over the 50 Myr glacial period, it is possible that organisms were selected to have lower activation ener-
gies in order to maintain their metabolisms at lower temperatures. At an activation energy of 0.22 eV, the body size for both
morphological models no longer varies with temperature, and the body size–temperature relationship becomes inverted for
both models when the activation energy is less than 0.22 eV. These inversions coincide with the difference in slopes of metabolism
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under each activation energy relative to the nutrient uptake rate (figure 3). Determining the adaptability of metabolic activation
energy would be an important step to understanding the range of possible evolutionary trajectories in changing climates.

(d) Pre- and post-Snowball dynamics
The paths taken through temperature–resource concentration space during the onset and termination of the Cryogenian glacial
periods are important to consider in order to understand the evolutionary trajectories of the existing organisms. Given that pri-
mary production decreases owing to decreasing temperature and PAR availability, it is likely that temperature decreased faster
than resource availability during glacial onset. This trajectory causes diffusive cells to initially grow, reaching their maximum pre-
dicted size (approx. 6 μm) while the choanoblastula reach their minimum (approx. 12 μm) (figure 8, arrow 1). This places the two
modelled organisms in a remarkably similar size range, with radii less than an order of magnitude apart, and at around 10 μm,
approximately the size of a modern Chlamydomonas [59] or Salpingoeca cell [60]. Then, as resource concentrations begin to drop, the
organisms’ evolutionary pathways diverge as the diffusive cell is forced to shrink and the choanoblastula grows (figure 8, arrow 2).

Following Snowball Earth glaciations, temperature and resource availability increased. Like the onset, it is likely that tempera-
ture rebounded before resource concentrations rose. As temperature increased and NPP rates had not yet recovered,
choanoblastula would continue to get larger, reaching the maximum predicted size, as the diffusive cell reaches its minimum
(figure 8, arrow 3). As resource concentrations rise, the model predicts that the choanoblastula would shrink and the diffusive
cell would grow (figure 8, arrow 4). While it is likely that some organisms reduced their size in response, the larger size,
accompanied by a now increasing amount of resources and faster metabolic rates, could allow new ecological strategies such
as predation to develop, permitting the organism to maintain its size as resource availability continues to increase. The hysteretic
difference in trajectories through nutrient–temperature space, as well as the new ecological selective pressures arising at the end of
the glaciation periods, may help to explain the rapid proliferation of macroscopic fossils and early metazoan lineages that appear
in the Ediacaran.
5. Conclusion
A variety of hypotheses have been proposed to explain the propensity of eukaryotic lineages to evolve complex multicellularity
more readily: the enhanced energy capacity provided to eukaryotes by mitochondria [61], the eukaryotic-style ‘default off’
mode of gene regulation [62], the differential effects of genetic drift on prokaryotic and eukaryotic genomes [63], and the signifi-
cance of the nucleus in separating transcription and translation [64]. While each of these features plays an important role in
differentiating eukaryotic and prokaryotic multicellularity, none provides a definitive answer for the 1.5 billion year gap between
eukaryogenesis and the emergence of complex multicellular lineages, or for why multiple eukaryotic clades evolved multicellu-
larity during the Neoproterozoic [65]. The Neoproterozoic Snowball Earth glacial events provide an environmental driver that our
models show would have selected for multicellular morphologies during this time period, helping explain the lag between eukar-
yogenesis and the proliferation of complex multicellularity.

The mechanistic models presented were chosen for their resemblance to what we consider to be likely morphologies during
this period, namely diffusive prokaryotic cells and simple, motile multicellular organisms similar to a hypothetical early metazoan
lineage. While the presented models do not consider the increase in regulatory and signalling machinery necessary to maintain a
complex multicellular organism, they show that a multicellular morphology is adaptable from an energetic perspective [66,67].
More generally, the argument presented comes down to differences in scaling between nutrient uptake and metabolic rate
under changes in an organism’s environment. The hollow sphere represents one possible early morphology, and is not likely to
be a realistic morphology for all the ancestors of complex multicellular lineages. While it may represent only one of many different
possible optima, the general scaling patterns may be more universal. The transition to multicellularity is accompanied by a tran-
sition to sublinear scaling of metabolic rates, where metabolism was likely proportional to surface area prior to the evolution of
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circulatory systems [30,31]. However, additional work to quantify how alternative morphologies of early multicellular and colonial
organisms may have responded under these conditions will be an important next step to understand how generalizable these scal-
ing features are [68]. Do the stationary branching body-plans observed in Ediacaran rangeomorphs or the branching canals of
demosponges offer alternative adaptive paths to Snowball Earth conditions [69,70]? Additional analysis of the biophysical con-
straints of a variety of morphologies could further support Snowball Earth as an environmental trigger for the proliferation of
complex multicellularity across several eukaryotic clades.

Our finding that the adaptive strategies arising during the cold, highly viscous and nutrient-poor conditions of global glacia-
tions are shaped by metabolic scaling and the method of resource acquisition offers a potential explanation for the differences in
the types of multicellularity between bacteria and eukaryotes. Bacteria are obligate osmotrophs owing to the constraints on their
cell size arising from their scaling features, including the superlinear scaling of their metabolism to mass and ribosomes to volume
[31,71]. With the inability to escape the diffusive regime, they were constrained to decrease in size. Instead, eukaryotic cells, which
were already able to reach greater size owing to their linear scaling (likely owing to mitochondria) would have been able to tran-
sition into the ballistic uptake regime. While the temperature model suggests that diffusive cells may initially get larger as
temperature decreases, prokaryotes face fundamental barriers in their size owing to scaling that eukaryotes do not. The Cryogen-
ian glaciations therefore provided an opportunity for multicellular eukaryotes to have a selective advantage that bacteria do not
share.

Studies of choanoflagellates suggest that they live individually in low-resource regions but form colonies at high nutrient con-
centrations, while studies of Trichodesmium suggest that colony formation allows them to sink faster to reach nutriclines [72,73].
These observations also call for an analysis of the selective effect of resource patchiness as an additional environmental feature
in the evolution of multicellularity, and the potential differences in the function of multicellular motility between prokaryotes
and eukaryotes.
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